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Abstract — In most of the recently developed linear
kernel-driven BRDF (bidirectional reflectance) models,
there are usually 3 unknowns for each band. Usually a
least square (LS) approach is employed for inversion. As-
suming the observations are well sampled over the viewing
hemisphere (viewing zenith angle ,, azimuthal difference
¢ with the solar zenith angle ;) for a single 6;, as in most
cases of space-borne multiangulare observations such as
POLDER and MISR, the LS solution can be obtained for
the three unknowns.

It was once hoped that if the kernel-driven model has
sound physical meaning, the three parameters estimated
from such good 2-D sampling can be used over the whole
3-D (#:,6,, ¢) bidirection space (3DBS for short).

However, inversion of 395 BRDF datasets acquired by
POLDER of CNES (France) shows that when we apply
the inversion results over the whole 3-D space, for exam-
ple, at a far different 6;, the estimation errors in param-
eters will propagate differently and thus yield different
pattern of prediction errors, independent of the sound-
ness of the BRDF model physics. Our analysis concludes
that general knowledge of BRDF shapes of the land sur-
face has to be applied to constrain the inversion of single
(or narrow-range) §; multiangular observations. !

INTRODUCTION

With advance of multiangle remote sensing, it’s more
and more likely that BRDF models can and will be in-
verted for important biological or climatological parame-
ters earth surface such as leaf area index and albedo [1}.
In order to do so, linear kernel-driven BRDF models were
designed for BRDF and albedo products of satellite (real
or pseudo) multiangle-viewing instruments, as briefly re-
viewed in [2]. A linear kernel-driven BRDF model usually
has the following form:

BRDF = fiso+ foor kvol(0i7 0y, ¢) + fyeo * kyeo(oi: 0y, ¢)

(1)
where k. are “kernels”, i.e., known functions of 8;. 6,,
and ¢; f. are three unknown coefficients to be adjusted
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to fit observations. To conserve space, we will write this
equation as Y[M] = K[M, 3]X[3] where Y[M] is BRDF
vector for M observation geometries, K[M, 3] is corre-
sponding kernel matrix, and X |[3] the parameter vector.
Because we concentrate here on error propagation, we’ll
assume the above model is perfect in physics, i.e., no mod-
eling errors, and therefore both X and Y are true values
of parameters and BRDF. M observation geometries can
be regarded as M points in 3DBS. In case of single-6;
observations, these M points distribute only on a 2-D
subspace (single-6; 2DsS for short). Owing to the nonlin-
earity of kyo and kg, as functions over this 2DsS, a good
sampling over this 2DsS can obtain well-invertible matrix
K’K, then a regression method can get the estimations of
the unknown X:

Xest = [K'K]_IK’Y;;,,, (2)
where subscript obs mean real observations which inevitably
contain noise, usually assumed white and additive. We’ll
denote the noise vector 7[M) and its variance o2. Then
the parameter error vector Xe,r = [€is0, €vol, €geo]’ Will

be:
Xerr = Xest — X = [K’K]_IK," 3)

Using the estimated parameter vector, then a prediction
of BRDF at any point of the 3DBS can be made:

Ypre = Kpre[la 3] * Xest[3] (4)
Actually any linear combination A[l,n] * Y[n] over any
subspace of the 3DBS, such as blacksky albedo (BSA) or
white sky albedo (WSA), can be written in similar form:

Upre = Ax Ypre = AKpreXcst = Upre[l’ 3] * Xest[3]~ (5)

(6)
Note this is a single random number, its variance o2 con-
sists of variances and covarinces of three parameter errors
weighted by corresponding U terms. Lucht and Lewis [2]
applied the concept of weight of determination as a power-
ful tool to study the propagation of noise to error variance
of any u,r.. Based on their works, we further analyze the
effect of parameter estimate errors on relation of two pre-
dictions, to better our understanding on how the noise in

Uerr = Uisoiso + Uyot€vol + Ugeoeyeo
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the single-6; sampling may propagate through the 3DBS,
and influence the shape of retrieved BRDF and BSA.
We have to look into this effect because single-day
MISR and POLDER obtain multiangular views at al-
most the same 6;, and even multi-date POLDER BRDF
database or mutidate MODIS/MISR. combinations have
significant percentages of 6; ranging smaller than 10°.
Note however, this is not such a problem when the il-

lumination geometry is also well sampled such as with
MODIS AM&PM measurements.

PROPAGATION OF PARAMETER ERRORS
Following [2], we define a local prediction error u; err of
Upre OVEr a point or a subspace of the same sampling
2DsS. For example, if y1.pre = Ki[1,3] % X5 (3] is the
prediction of BRDF at a point in the sampling 2DsS,
its local predication error y; ... can be obtained by its
kernels K;[1,3] by (6). Now if we want to predict BRDF
of another point y, which has the same viewing direction
(64, &), but a slightly different 6, = 8; + Af;. we can
obtain y3 pre = Ka[l, 3] * X,4:(3] similarly and have:

Y2.pre — Yl.pre = (K2 — K1) * Xegt = Areat + Aerr (7)

where A,.q is the true value of ¥ — y1, and

@

Note that e;;, is missing since it’s the common part of
two predictions

Here we are concerned with A,..,; rather than the ab-
solute value of y,, because we are not only concerned with
the variance of ys, but also the shape of retrievd BRDF.
In the case where A.,, is larger than A, and with a
reversed sign, the real changing tendency of BRDF with
6; will be reversed in the retrieved BRDF. On the other
hand, correctly predicting the increment, A, is all why
we need a BRDF which is assumed to be superior to a
Lambert one. At this point, if a lambertian model is ap-
plied, it’s predication error will be A,cqr.

Areqt is linear combination of the true parameters:

9)

where Akgeo = kz.geo - kl.geo in (8), Akvol is defined
similarly. The eqs (8) and (9) look very similar, but
by assumption of perfect model physics, both fg., and
fvot should be positive. By requirement of orthogonality,
Akge, and Aky, should have opposite sign - otherwise the
model can not fit different changing tendency. In other
words,

Derr = (k2.gea - kl.geo)egeo + (k2.uol - kl.vol)evol

Areal = fyeoAkgea + fuolAkvol

|Areal| = “Akgeofgeol - IAkvolfuol”

On the other hand, egeo and ey may be positively or
negatively correlated, depending on the LS fitting. Even

(10)

in the case where perfect 2DsS sampling implies their
independence:

0’2A = (egeoAkgeo)2 + (e.,o[Akuol)2 (11)
This propagation error variance can be much larger than
A2, in mathematics and in practice using POLDER
BRDF data [3]. For comparison, if Akge, and Ak, have
the same sign, |Aeq| will be sum of two positive terms,
thus less relative estimation error is guaranteed. However,
the expense of this will be loss of ability to fit opposite
changing trends with 8; — or it has to allow either fgeo OF
fvor being negative.

In short, through sampling and data fitting, the noise
uncertainty propagates into three parameter errors and
their covariances, which further propagate by their own
kernels. For single 8; sampling, this distribution is de-
termined merely by the LS fitting on 2DsS of variable ¢
and 6y, thus the effects of this uncertainty-sharing on the
propagation along 6;, i.e., through Aky., and Ak, is
not constrained. In such sampling scheme, if the model is
near-orthogonal to 8; change, the error propagation can

-yield large predication 0%, and thus a poor retrieval of

BRDF shape. The essence of the problem is the lack
of information from 2DsS sampling about change of 4;,
rather than a problem of (near) orthogonality of kernels.
This error in Ay, or in average, in the derivative of BSA
w.r.t. 8; (BSA’), may yield uncertainty such as the whole
BRDF shape up and down at other solar zenith angles.
In general, when taking y; as a random point on the sam-
pling 2DsS and y, as also a random point over the 3DBS,
we may assume independence of y; and Ay, then:

Y2.err = Ylerr + Derr (12)

and:

0 =0} +0% (13)

In other words, given the total information from the ob-
servations available, the total uncertainty of predictions
is fixed. Different sampling schemes can minimize either
local prediction uncertainty or propagation uncertainty,
but their sum can not be minimized unless you increase
the total information. Based on this version of ”Princi-
ple of Uncertainty”, it’s obvious that a single-6; sampling
provides more information on the sampling 2DsS of y;,
leaving a larger share of uncertainty to propagation.

CONSTRAINED SINGLE-¢; INVERSION
Therefore the key problem of single-8; inversion is the
lack of information from observations about the change
tendency with 8;. So this is a situation we called ”well-
conditioned (in single-@; 2DsS) but still singular (in di-
mension of 6;).”

For real multiangle satellite instruments such as MISR
or POLDER, the 6; is almost fixed. For quasi-multiangle
(multi-dates) POLDER BRDF database [3], there are 56
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(14% of 395) data sets with 6; range smaller than 5°, for
example. By such narrow range of 6;, a moderate noise
level (say RMSE 0.01) may result in a failed inversion.

In such cases, a priori knowledge on BRDF of land
surface should be injected into inversion. Our knowledge
based ”single-look BRDF inversion” algorithm [4] should
be applicable in a ”single-8; inversion” as well. How-
ever, single-8; cases usually have enough looks for a well-
conditioned inversion over the 2DsS and thus should need
much smaller "a priori information ratio” (a-R) rather
than 3/4 suggested for single-look inversion. We ana-
lyzed well sampled Parabola field measurements (Deering
and Leone, cited in [4]) and found there is a good rela-
tionship between the BRDF shapes derived from single-
0; sampling and that from the full data set. Generally
speaking, single-8; 2DsS sampling usually yields a sharper
bowlshape or domeshape BRDF than full 3DBS data set.
This knowledge can then be used to constrain single-8;
inversion. A cost function (BSA, — BSA})?/o? and a
corresponding lateral look can be made [4], where the
subscript e means estimated from the unknown param-
eters and b means from the a priori best guess. This
single @; algorithm results in an a-R of 1/NOL (number
of looks). In our tests of the algorithm using Parabola
data, the improvement of single 8; inversion is marvelous
even when the ratio is as small as 1/100. The following
presents some typical examples:

‘ 0; I nol I fiso | Svot | fgeo I rmse | bsa | wsa, \
| 180|115 .137 | 238 | .013 | .014 | .124 | .166 |

This presents a rather strong bowlshape in the sampling
2DsS, thus it predicts a much higher WSA based on BSA
observed at near nadir 8;. After one lateral look is added,
the results are changed to

L 6; I nol Lfiso | Juol | Jgeo | rmse I bsa | wsa ‘
| 180|116 | .170 | .120 | .049 | .017 | .126 | .134 |

We can see the changes in RMSE (0.003) and BSA (0.002)
is minor, but the changes for the three parameters are
significantly improved and more reliable. Another one
before adding the lateral look is:

| 8; l nol | fiso | fvot | fgeo | rmse | bsa | wsa I
| 731 90| .317 | .027 | 132 | .024 | .119 | .163 |

This presents a domeshape at large §;, thus a prediction
overestimated WSA and f;;, (which is the nadir sun and
nadir viewing reflectance). After the lateral look is added,
the results are now:

| 6; | nol | fiso I foot | fgeo | rmse | bsa I wsa |
| 73.1| 91| .173 | .065 | .057 | .031 | .15 | .116 |

Note the changes in RMSE (0.007) and BSA (0.004) are
larger than the previous one - the reasons may be two:

our current a priori means favour a bowlshape [4], thus
constraining wild domeshape would cost more; and the
NOL is smaller than before. But please note that the
domeshape is more or less still reserved.

However in case where NOL is even smaller, a lateral
look may inject more a priori information than needed.
For example,

| 0; | nol I fiso I Jvot | Jgeo | rmse I bsa | wsa l
| 317 51| .520 | -12 | 228 | .029 | .286 | .223 |

This presents a strong domeshape. After the lateral look
is added:

| 8; | nol | fiso | fuol | foeo | rmse | bsa I wsa l
| 31.7| 52| .341 | .160 | .071 | .049 | 276 | 286 |

We can note though we get more reliable WSA and f;,,,
the increment of RMSE is rather large, and the strong
domeshape has been reversed into a weak bowlshape. All
this indicates the ratio 1/51 may have over constrained
the inversion.

CONCLUSION AND DISCUSSION
Single sun position sampling has intrinsic lack of infor-
mation about BSA change tendency with 8;. But from
Parabola BRDF sets, we have gained some information
which can be used to constrain single ; inversion. It
seems a very small a-R like 1/100 is appropriate for well
sampled single §; Parabola data. However single date
MISR. and POLDER have only around 10 looks which
may not have enough information to overdetermine the
three unknowns in the 2DsS. In such case what a-R would
be the most appropriate needs further practice.
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